Vector Addition 1

Because vectors have a direction as well as a magnitude, they can't be added using the same methods as scalars.

Example 1

Jack pushes on a box with a force of 100 N [East]. Jill pushes on the same box with a force of 100 N [West]. What is the net force on the box?

Vector addition can be carried out using one of several methods. The first is the graphical, or scale diagram method.

Adding Vectors Using Scale Diagrams

To add two or more vectors using a scale diagram:

- 1. Draw the first vector to scale.
- 2. Draw the second vector to scale, but it must start from the tip of the first vector.
- 3. Repeat step 2 for any additional vectors.
- 4. Draw an arrow that points from the start of the first vector to the end of the last vector. This is known as the **resultant vector**, and is the sum of the other vectors.
- 5. Determine the magnitude and direction of the resultant by measuring with a ruler and protractor.

Example 2

A dog walks 200 m [East], stops to pay his respects to a fire hydrant, and then continues walking another 400 m [East]. Determine the displacement of the dog at the end of his walk.

1	1												
1													
	1												
1	i												
1	Ĩ												
	1												
	1												
	1												
ä		 	 L	 	 								

Example 3

A cyclist travels 5 km [N], then turns right and travels another 10 km [E]. Determine the displacement of the cyclist at the end of her ride.

Homework

Add the following combinations of vectors using scale diagrams:

- 1. A + B
- 2. A+C
- 3. B + D
- 4. B + F5. C + E

8. F + D9. A + B + F10. A + B + C + D + E + F + G

6. C + D7. D + F

$A = 100 \ m \ [N]$	E = 94.5 m [S]
B = 50 m [E]	F = 15 m [N]
C = 42.5 m [S]	G = 175 m [W]
$D = 63.5 \ m \ [W]$	